Microscopic model approaches to fragmentation of nuclei and phase transitions in nuclear matter
نویسندگان
چکیده
The properties of excited nuclear matter and the quest for a phase transition which is expected to exist in this system are the subject of intensive investigations. High energy nuclear collisions between finite nuclei which lead to matter fragmentation are used to investigate these properties. The present report covers effective work done on the subject over the two last decades. The analysis of experimental data is confronted with two major problems, the setting up of thermody-namic equilibrium in a time-dependent fragmentation process and the finite size of nuclei. The present status concerning the first point is presented. Simple classical models of disordered systems are derived starting with the generic bond percolation approach. These lattice and cellular equilibrium models, like percolation approaches, describe successfully experimental fragment multiplicity distributions. They also show the properties of systems which undergo a thermodynamic phase transition. Physical observables which are devised to show the existence and to fix the order of critical behaviour are presented. Applications to the models are shown. Thermodynamic properties of finite systems undergoing critical behaviour are advantageously described in the framework of the microcanonical ensemble. Applications to the designed models and to experimental data are presented and analysed. Perspectives of further developments of the field are suggested.
منابع مشابه
v 2 6 O ct 1 99 8 A model for nuclear matter fragmentation : phase diagram and cluster distributions
We develop a model in the framework of nuclear fragmentation at thermodynamic equilibrium which can be mapped onto an Ising model with constant magnetization. We work out the thermodynamic properties of the model as well as the properties of the fragment size distributions. We show that two types of phase transitions can be found for high density systems. They merge into a unique transition at ...
متن کامل- th / 9 80 50 03 v 1 2 M ay 1 99 8 A model for nuclear matter fragmentation : phase diagram and cluster distributions
We develop a model in the framework of nuclear fragmentation at thermodynamic equilibrium which can be mapped onto an Ising model with constant magnetization. We work out the thermodynamic properties of the model as well as the properties of the fragment size distributions. We show that two types of phase transitions can be found for high density systems. They merge into a unique transition at ...
متن کاملA model for nuclear matter fragmentation: phase diagram and cluster distributions
We develop a model in the framework of nuclear fragmentation at thermodynamic equilibrium which can be mapped onto an Ising model with constant magnetization. We work out the thermodynamic properties of the model as well as the properties of the fragment size distributions. We show that two types of phase transitions can be found for high density systems. They merge into a unique transition at ...
متن کاملPhase Transitions in Dense Matter and Recent Topics of Neutron Stars
Core of neutron star consists of highly dense matter above normal nuclear density ρ0 ≃ 0.16fm , where phase transitions is expected to take place. We review some phase transitions and recent topics of neutron stars. INTRODUCTION There exist many candidates of the phase transitions in highly dense nuclear matter: boson condensation (K,π), quark matter, hyperonic matter and so on [1]. They are of...
متن کاملCellular Automata Simulation of a Bistable Reaction-Diffusion System: Microscopic and Macroscopic Approaches
The Cellular Automata method has been used to simulate the pattern formation of the Schlögl model as a bistable Reaction-Diffusion System. Both microscopic and macroscopic Cellular Automata approaches have been considered and two different methods for obtaining the probabilities in the microscopic approach have been mentioned. The results show the tendency of the system towards the more sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008